

A. Bross
MC Meeting
Berkeley, 2/05

• The technical program for MuCooL has been well established and has worked in close coordination with the goals of MICE. There have been some recent changes, however

The PROGRAM:

- RF
 - Goal to test 805 and 201 MHz cavities to the highest gradients possible.
 - Study breakdown mechanisms
 - Measure electron and gamma emissions
 - Develop techniques to reduce emissions and run stably at very high gradient
 - Surface treatments
 - Coatings
 - Materials
 - Directly applicable to the needs/goals of MICE.
 - Low-background high-gradient 201 MHz operation crucial to MICE
 - Study closed-cell structures (windows)
 - Start with MICE windows and then move beyond

- Absorber Program
 - ◆ In this area the MuCooL and MICE efforts have diverged somewhat.
 - MuCooL will still focus on LH₂ absorbers than can withstand high-power loading
 - MICE will not (CC option)
 - Convective and Forced-Flow options will be explored
 - Primary motivation for the cryo-infrastructure now being installed in the MTA
 - There still exist a number of common areas of interest/study
 - Window design
 - Instrumentation
 - Safety aspects
- MTA High-Intensity Beam line
 - MuCooL is working to bring LINAC beam out to the MTA as soon as possible
 - These high-intensity (power) studies were are still are considered complementary to the MICE program

Solenoid Design

- The MuCooL collaboration continue to work on coupling coil (and general) magnet design.
 - Engineering
 - Optimization
 - · Cost
- Obviously a RF-Coupling Coil module is fundamental to MICE

Conclusion

 A close collaboration between MuCooL and MICE exits and is crucial to the success of both programs